近期,百度文档智能团队基于多语言跨模态布局增强的文档智能大模型文心ERNIE-Layout,刷新了五类11项文档智能任务效果。继文心ERNIE-Layout1.0后,文心ERNIE-Layout再次登顶DocVQA榜单,并成为榜单首个突破90分大关技术方案[1]。同时,基于文心ERNIE-Layout的开放文档抽取问答模型DocPrompt, 首次以文档智能模型登顶网页问答榜单WebSRC[2]。
飞桨自然语言处理模型库PaddleNLP第一时间为大家开源了文档智能十一边形战士系列模型。文心ERNIE-Layout多语言跨模态布局增强文档智能大模型
文心ERNIE-Layout依托文心ERNIE,基于布局知识增强技术,融合文本、图像、布局等信息进行联合建模,能够对多模态文档(如文档图片、PDF文件、扫描件等)进行深度理解与分析,为各类上层应用提供SOTA模型底座。
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/model_zoo/ernie-layout欢迎使用文心ERNIE-Layout,STAR收藏跟踪最新开源工作。
DocPrompt开放文档抽取问答模型(基于文心ERNIE-Layout)
文档智能技术广泛应用于金融、保险、能源、物流、医疗等行业,常见的应用场景包括财务报销单、招聘简历、企业财报、合同文书、动产登记证、法律判决书、物流单据等多模态文档的关键信息抽取、文档解析、文档比对等。基于前沿的文档智能技术,PaddleNLP将持续开源一系列产业实践范例,解决开发者们实际应用难题。
https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/document_intelligence本次重磅开源的DocPrompt开放文档抽取问答模型,以文心ERNIE-Layout为底座,可精准理解图文信息,推理学习附加知识,准确捕捉图片、PDF等多模态文档中的每个细节。通过PaddleNLP Taskflow,仅用三行Python代码即可快速体验DocPrompt功能。from paddlenlp import Taskflow
docprompt = Taskflow("document_intelligence", model='docprompt')
docprompt({"doc": "./invoice.jpg", "prompts": ["发票金额", "左侧抬头日期是什么?"]})
DocPrompt零样本问答效果非常强悍!能够推理学习空间位置语义,准确捕捉跨模态文档信息,轻松应对各类复杂文档。
针对网页、表格和试卷等复杂布局文档,DocPrompt也能结合上下文及表头信息,给出精准答案。
以文心ERNIE-Layout为底座的DocPrompt,还具备跨语言多语种的抽取亮点!也欢迎大家访问Huggingface文心ERNIE-Layout空间,体验DocPrompt带来的更多惊喜!https://huggingface.co/spaces/PaddlePaddle/ERNIE-Layout▲ Huggingface 文心ERNIE-Layout空间文心ERNIE-Layout以文心ERNIE为底座,融合文本、图像、布局等信息进行跨模态联合建模,创新性引入布局知识增强,提出阅读顺序预测、细粒度图文匹配等自监督预训练任务,升级空间解耦注意力机制。输入基于VIMER-StrucTexT大模型[3]提供的OCR结果,在各数据集上效果取得大幅度提升,相关工作已被EMNLP 2022 Findings 会议收录[4]。
文心ERNIE-mmLayout为进一步探索不同粒度元素关系对文档理解的价值,在文心ERNIE-Layout的基础上引入基于GNN的多粒度、多模态Transformer层,实现文档图聚合(Document Graph Aggregation)表示。最终,在多个信息抽取任务上以更少的模型参数量超过SOTA成绩,相关论文被ACM MM 2022会议收录[5]。文档智能(DI, Document Intelligence)主要指对于网页、数字文档或扫描文档所包含的文本以及丰富的排版格式等信息,通过人工智能技术进行理解、分类、提取以及信息归纳的过程[6]。百度文档智能技术体系立足于强大的NLP与OCR技术积累,以多语言跨模态布局增强文档智能大模型文心ERNIE-Layout为核心底座,结合图神经网络技术,支撑文档布局分析、抽取问答、表格理解、语义表示多个核心模块,满足上层应用各类文档智能分析功能需求。百度TextMind智能文档分析平台[7]可提供包括文档信息抽取、文本内容审查、企业文档管理、文档格式解析、文档内容比对等全方位一站式的文档智能服务,已形成一套完整的企业文档场景化解决方案,满足银行、券商、法律、能源、传媒、通信、物流等不同行业和场景的文档处理需求,以AI助力企业的办公智能化升级和数字化转型。10月30日,文心ERNIE-Layout论文作者,百度高工将带来直播讲解,介绍文档智能的前沿技术,深度解读多语言跨模态布局增强文档智能大模型文心ERNIE-Layout与开放文档抽取问答模型DocPrompt,并带来基于PaddleNLP的实践范例。欢迎扫码入群,获取直播课程链接。入群还有更多福利:
*如二维码失效,可前往PaddleNLP GitHub主页获取最新二维码。*本文封面图背景由文心ERNIE-ViLG大模型生成,欢迎点击参考链接[8],体验更多百度AI开放能力。https://github.com/PaddlePaddle/PaddleNLP[1]DocVQA榜单
https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1 [2]网页问答榜单WebSRC
https://x-lance.github.io/WebSRC/index.html[3]VIMER-StrucTexT
https://github.com/PaddlePaddle/VIMER#structext[4]文心ERNIE-Layout: Layout-Knowledge Enhanced Multi-modal Pre-trainingfor Document Understanding
https://arxiv.org/abs/2210.06155[5]文心ERNIE-mmLayout: Multi-grained MultiModal Transformer for Document Understanding
https://arxiv.org/abs/2209.08569[6]崔磊,徐毅恒,吕腾超,韦福如. 文档智能: 数据集、模型和应用[J]. 中文信息学报, 2022, 36(6): 1-19.[7]百度AI开放平台——智能文档分析平台
https://ai.baidu.com/tech/nlp/Textanalysis[8]文心ERNIE-ViLG
https://wenxin.baidu.com/moduleApi/ernieVilg